Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Fitoterapia ; 173: 105831, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278423

RESUMO

Osteoporosis is an aging disease characterized by an imbalance between bone formation and resorption. However, drugs that inhibit bone resorption have various adverse effects. Ginseng (Panax ginseng), a prominent herbal medicine in East Asia for >2000 years, is renowned for its manifold beneficial properties, including antioxidant, anti-cancer, anti-diabetic, and anti-adipogenic activities. Despite its long history of use, the pharmacological functions of ginseng leaves are not yet fully comprehended. In this study, we evaluated the potential effects of ginseng leaf extract (GLE) on receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation in RAW264.7 macrophage cells. Tartrate-resistant acid phosphatase (TRAP) staining revealed that GLE had significant anti-osteoclastogenic activity. GLE significantly reduced mRNA levels of osteoclast differentiation markers including TRAP, nuclear factor of activated T cell cytoplasmic 1, and cathepsin K. It also suppressed the production of reactive oxygen species (ROS) and secretion of high mobility group box-1 (HMGB1) in RANKL-treated RAW264.7 cells. In addition, GLE upregulated dose- and time-dependently the expression of heme oxygenase-1 (HO-1), eventually suppressing ROS production and HMGB1 secretion. This effects of GLE were significantly reversed by Tin Protoporphyrin IX dichloride, an inhibitor of HO-1, and HO-1 shRNA, indicating that HO-1 potently inhibits RANKL-induced osteoclast differentiation by inhibiting ROS production and HMGB1 secretion. Taken together, these observations suggest that GLE could have therapeutic potential as a natural product-derived medicine for the treatment of bone disorders.


Assuntos
Reabsorção Óssea , Proteína HMGB1 , Panax , Osteoclastos , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Diferenciação Celular , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/metabolismo , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Ligante RANK
2.
J Ethnopharmacol ; 308: 116267, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36796742

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Red clover (Trifolium pratense L.) is a traditional Chinese medicine and use as herbal medicine which has the effects of regulating menopausal symptoms, heart problem, inflammatory disease, psoriasis and cognitive deficits. In previous reported, the studies of red clover were mainly focused on clinical practice. the pharmacological functions of red clover not fully elucidated. AIM OF THE STUDY: To identify the molecules that regulate ferroptosis, we examined whether red clover (Trifolium pratense L.) extracts (RCE) affected ferroptosis induced by chemical treatment or cystine/glutamate antiporter (xCT) deficiency. MATERIALS AND METHODS: Cellular models for ferroptosis were induced by erastin/Ras-selectiv lethal 3 (RSL3) treatment or xCT deficiency in mouse embryonic fibroblasts (MEFs). Intracellular iron and peroxidized lipid levels were determined using Calcein-AM and BODIPY-C11 fluorescence dyes, respectively. Protein and mRNA were quantified by Western blot and real-time polymerase chain reaction, respectively. RNA sequencing analysis was performed on xCT-/- MEFs. RESULTS: RCE significantly suppressed ferroptosis induced by both erastin/RSL3 treatment and xCT deficiency. The anti-ferroptotic effects of RCE correlated to ferroptotic phenotypic changes such as cellular iron accumulation and lipid peroxidation in cellular ferroptosis models. Importantly, RCE affected levels of iron metabolism-related proteins including iron regulatory protein 1, ferroportin 1 (FPN1), divalent metal transporter 1, and transferrin receptor. RNA sequencing analysis of xCT-/- MEFs identified that expression of cellular defense genes was upregulated, while expression of cell death-related genes was downregulated, by RCE. CONCLUSION: RCE potently suppressed ferroptosis triggered both by erastin/RSL3 treatment and xCT deficiency by modulating cellular iron homeostasis. This is the first report that RCE has therapeutic potential in diseases associated with ferroptotic cell death, particularly ferroptosis induced by dysregulation of cellular iron metabolism.


Assuntos
Trifolium , Animais , Camundongos , Trifolium/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Morte Celular , Ferro/metabolismo , Homeostase
3.
Antioxidants (Basel) ; 11(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35624674

RESUMO

Intracellular iron accumulation in dopaminergic neurons contributes to neuronal cell death in progressive neurodegenerative disorders such as Parkinson's disease. However, the mechanisms of iron homeostasis in this context remain incompletely understood. In the present study, we assessed the role of the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) in cellular iron homeostasis. We identified that PPARδ inhibited 6-hydroxydopamine (6-OHDA)-triggered neurotoxicity in SH-SY5Y neuroblastoma cells. PPARδ activation with GW501516, a specific PPARδ agonist, mitigated 6-OHDA-induced neuronal damage. Further, PPARδ activation also suppressed iron accumulation, which contributes to 6-OHDA-induced neuronal damage. PPARδ activation attenuated 6-OHDA-induced neuronal damage in a similar manner to that of the iron chelator deferoxamine. We further elucidated that PPARδ modulated cellular iron homeostasis by regulating expression of divalent metal transporter 1, ferroportin 1, and ferritin, but not transferrin receptor 1, through iron regulatory protein 1 in 6-OHDA-treated cells. Interestingly, PPARδ activation suppressed 6-OHDA-triggered generation of reactive oxygen species and lipid peroxides. The effects of GW501516 were abrogated by shRNA knockdown of PPARδ, indicating that the effects of GW501516 were PPARδ-dependent. Taken together, these findings suggest that PPARδ attenuates 6-OHDA-induced neurotoxicity by preventing intracellular iron accumulation, thereby suppressing iron overload-associated generation of reactive oxygen species and lipid peroxides, key mediators of ferroptotic cell death.

4.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628458

RESUMO

Mitophagy is a selective form of autophagy that removes damaged mitochondria. Increasing evidence indicates that dysregulated mitophagy is implicated in numerous autoimmune diseases, but the role of mitophagy in rheumatoid arthritis (RA) has not yet been reported. The aim of the present study was to determine the roles of mitophagy in patient-derived RA synovial fibroblasts (RASFs) and in the collagen antibody-induced arthritis mouse model. We measured the mitophagy marker PTEN-induced putative kinase 1 (PINK1) in RASFs treated with tumor necrosis factor-α (TNF-α) using Western blotting and immunofluorescence. Arthritis was induced in PINK1-/- mice by intraperitoneal injection of an anti-type II collagen antibody cocktail and lipopolysaccharide. RA severity was assessed by histopathology. PINK1 expression and damaged mitochondria increased in TNF-α treated RASFs via increased intracellular levels of reactive oxygen species. PINK1 knockdown RASFs decreased cellular migration and invasion functions. In addition, PINK1-/- mice with arthritis exhibited markedly reduced swelling and inflammation relative to wild-type mice with arthritis. Taken together, these findings suggest that regulation of PINK1 expression in RA could represent a potential therapeutic and diagnostic target for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinovite , Animais , Anticorpos , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
Biomedicines ; 9(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34829956

RESUMO

Enpp2 is an enzyme that catalyzes the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which exhibits a wide variety of biological functions. Here, we examined the biological effects of Enpp2 on dendritic cells (DCs), which are specialized antigen-presenting cells (APCs) characterized by their ability to migrate into secondary lymphoid organs and activate naïve T-cells. DCs were generated from bone marrow progenitors obtained from C57BL/6 mice. Enpp2 levels in DCs were regulated using small interfering (si)RNA or recombinant Enpp2. Expression of Enpp2 in LPS-stimulated mature (m)DCs was high, however, knocking down Enpp2 inhibited mDC function. In addition, the migratory capacity of mDCs increased after treatment with rmEnpp2; this phenomenon was mediated via the RhoA-mediated signaling pathway. Enpp2-treated mDCs showed a markedly increased capacity to migrate to lymph nodes in vivo. These findings strongly suggest that Enpp2 is necessary for mDC migration capacity, thereby increasing our understanding of DC biology. We postulate that regulating Enpp2 improves DC migration to lymph nodes, thus improving the effectiveness of cancer vaccines based on DC.

6.
Biomed Pharmacother ; 143: 112223, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649350

RESUMO

Ferroptosis is a recently recognized process of cell death characterized by accumulation of iron-dependent lipid peroxides. Herein, we demonstrate that peroxisome proliferator-activated receptor δ (PPARδ) inhibits ferroptosis of mouse embryonic fibroblasts (MEFs) derived from cysteine/glutamate transporter (xCT)-knockout mice. Activation of PPARδ by the specific ligand GW501516 led to a dose-dependent decrease in ferroptotic cell death triggered by xCT deficiency, along with decreased levels of intracellular iron accumulation and lipid peroxidation. These effects of GW501516 were abolished by PPARδ-targeting small interfering RNA (siRNA) and the PPARδ inhibitor GSK0660, indicating that PPARδ inhibits xCT deficiency-induced ferroptosis. In addition, GW501516-activated PPARδ time- and dose-dependently upregulated catalase expression at both the mRNA and protein levels. This PPARδ-mediated upregulation of catalase was markedly attenuated in cells treated with PPARδ-targeting siRNA and GSK0660, indicating that expression of catalase is dependent on PPARδ. Consistently, the effects of GW501516 on ferroptosis of xCT-deficient MEFs were counteracted in the presence of 3-amino-1,2,4-triazole, a specific inhibitor of catalase, suggesting that catalase is essential for the effect of PPARδ on ferroptosis triggered by xCT deficiency. GW501516-activated PPARδ stabilized peroxisomes through catalase upregulation by targeting peroxisomal hydrogen peroxide-mediated lysosomal rupture, which led to ferroptosis of xCT-deficient MEFs. Collectively, these results demonstrate that PPARδ modulates ferroptotic signals in xCT-deficient MEFs by regulating catalase expression.


Assuntos
Sistema y+ de Transporte de Aminoácidos/deficiência , Ferroptose , Fibroblastos/metabolismo , PPAR gama/metabolismo , Peroxissomos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Catalase/biossíntese , Catalase/genética , Células Cultivadas , Indução Enzimática , Ferroptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Camundongos Knockout , Estresse Oxidativo , PPAR gama/agonistas , PPAR gama/genética , Peroxissomos/efeitos dos fármacos , Peroxissomos/genética , Peroxissomos/patologia , Transdução de Sinais , Tiazóis/farmacologia
7.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445415

RESUMO

Chimeric antigen receptor (CAR)-T cells are effective in the treatment of hematologic malignancies but have shown limited efficacy against solid tumors. Here, we demonstrated an approach to inhibit recurrence of B cell lymphoma by co-expressing both a human anti-CD19-specific single-chain variable fragment (scFv) CAR (CD19 CAR) and a TGF-ß/IL-7 chimeric switch receptor (tTRII-I7R) in T cells (CD19 CAR-tTRII-I7R-T cells). The tTRII-I7R was designed to convert immunosuppressive TGF-ß signaling into immune-activating IL-7 signaling. The effect of TGF-ß on CD19 CAR-tTRII-I7R-T cells was assessed by western blotting. Target-specific killing by CD19 CAR-tTRII-I7R-T cells was evaluated by Eu-TDA assay. Daudi tumor-bearing NSG (NOD/SCID/IL2Rγ-/-) mice were treated with CD19 CAR-tTRII-I7R-T cells to analyze the in vivo anti-tumor effect. In vitro, CD19 CAR-tTRII-I7R-T cells had a lower level of phosphorylated SMAD2 and a higher level of target-specific cytotoxicity than controls in the presence of rhTGF-ß1. In the animal model, the overall survival and recurrence-free survival of mice that received CD19 CAR-tTRII-I7R-T cells were significantly longer than in control mice. These findings strongly suggest that CD19 CAR-tTRII-I7R-T cell therapy provides a new strategy for long-lasting, TGF-ß-resistant anti-tumor effects against B cell lymphoma, which may lead ultimately to increased clinical efficacy.


Assuntos
Antígenos CD19/imunologia , Interleucina-7/genética , Linfoma de Células B/terapia , Recidiva Local de Neoplasia/terapia , Anticorpos de Cadeia Única/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Células Cultivadas , Feminino , Humanos , Imunoterapia Adotiva , Interleucina-7/metabolismo , Células K562 , Linfoma de Células B/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Recidiva Local de Neoplasia/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922658

RESUMO

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) and inducers of T cell-mediated immunity. Although DCs play a central role in promoting adaptive immune responses against growing tumors, they also establish and maintain peripheral tolerance. DC activity depends on the method of induction and/or the presence of immunosuppressive agents. Tolerogenic dendritic cells (tDCs) induce immune tolerance by activating CD4+CD25+Foxp3+ regulatory T (Treg) cells and/or by producing cytokines that inhibit T cell activation. These findings suggest that tDCs may be an effective treatment for autoimmune diseases, inflammatory diseases, and infertility.


Assuntos
Doenças Autoimunes/patologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Infertilidade/patologia , Inflamação/patologia , Animais , Doenças Autoimunes/imunologia , Humanos , Infertilidade/imunologia , Inflamação/imunologia
9.
Foods ; 9(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722299

RESUMO

This study investigated the effects of L-cysteine (C) combined with Boswellia serrata (B) and whey protein (W) on the antioxidant and physicochemical properties of pork patties. Proximate composition, water holding capacity (WHC), pH, texture profile analysis, sensory evaluation, thiobarbituric acid-reactive substances (TBARS), DPPH radical-scavenging activity, volatile basic nitrogen (VBN), and color stability were assessed. Patty VBN gradually increased throughout the storage period. However, VBN for the C treatment increased relatively slowly, indicating that cysteine can delay spoilage and extend the shelf life of patties. The protein content of the whey powder treatment group increased to a greater extent than that of the C and control (CON) groups. Pork patties supplemented with antioxidants showed significantly higher WHC and significantly lower cooking loss and hardness than the CON. Moreover, the addition of 2% whey, 1% B. serrata, and 0.25% cysteine (WBC) significantly enhanced the relative DPPH radical-scavenging activity and sensory characteristics of the patties. After 7-day storage, the MetMb and TBARS values of all treatments were significantly lower than those of the untreated. The results indicated that there was synergy among the cysteine, B. serrata, and whey protein. This finding is of great importance to the production of high-quality pork patties with enhanced shelf life.

10.
Molecules ; 25(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570881

RESUMO

This study shows that taurine and ginsenoside Rf act synergistically to increase the expression of brain-derived neurotrophic factor (BDNF) in SH-SY5Y human neuroblastoma cells in a dose- and time-dependent manner. The increase of BDNF mRNA by taurine and ginsenoside Rf was markedly attenuated by inhibitors of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. In addition, taurine and ginsenoside Rf protected cells from corticosterone-induced BDNF suppression and reduced cell viability and lactate dehydrogenase release. The results from this study showed that combined treatment with both taurine and ginsenoside Rf enhanced BDNF expression and protected cells against corticosterone-induced damage.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corticosterona/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/farmacologia , Proteínas de Neoplasias/biossíntese , Neuroblastoma/metabolismo , Taurina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia
11.
Foods ; 9(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093227

RESUMO

This study aimed to evaluate the effect of reduced particle size of ginseng by roasting and cryogenic milling on increasing its water solubility and physiological activity. The samples were roasted for different times (9-21 min) and generated in different sizes (10-50, and >50 µm). All roasted samples revealed significantly smaller particle sizes than did non-roasted samples, based on Sauter mean diameter (D [3,2], p < 0.05). Furthermore, the particle sizes of roasted samples decreased until roasting up to 15 min. In terms of the water solubility index (WSI), antioxidant activity, total polyphenol content (TPC), and total polysaccharides according to particle size, 10-20 µm-sized samples showed the highest values when compared with >50 µm-sized samples. Based on roasting time, WSI values of all samples roasted for up to 15 min were higher than those of the control (not roasted) (p < 0.05). Antioxidant activity and TPC also increased with increasing roasting time. Total polysaccharide content was the highest upon roasting for 15 min, except for the 10-20 µm sample. Ginsenoside content of roasted samples >20 µm size was higher than that of the control (not roasted) except after 15 min of roasting. Therefore, roasting and cryogenic milling are effective in producing ginseng root powder.

12.
Food Sci Anim Resour ; 40(1): 106-117, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31970335

RESUMO

Cellular senescence is associated with age-related vascular disorders and has been implicated in vascular dysfunctions. Here, we show that duck oil-loaded nanoemulsion (DO-NE) attenuates premature senescence of vascular smooth muscle cells (VSMCs) triggered by angiotensin II (Ang II). Compared with control nanoemulsion (NE), DO-NE significantly inhibited the activity of senescence-associated ß-galactosidase, which is a biomarker of cellular senescence, in Ang II-treated VSMCs. SIRT1 protein expression was dose- and time-dependently induced in VSMCs exposed to DO-NE, but not in those exposed to NE, and SIRT1 promoter activity was also elevated. Consistently, DO-NE also dose-dependently rescued Ang II-induced repression of SIRT1 expression, indicating that SIRT1 is linked to the anti-senescence action of DO-NE in VSMCs treated with Ang II. Furthermore, the SIRT1 agonist resveratrol potentiated the effects of DO-NE on VSMCs exposed to Ang II, whereas the SIRT1 inhibitor sirtinol elicited the opposite effect. These findings indicate that DO-NE inhibits senescence by upregulating SIRT1 and thereby impedes vascular aging triggered by Ang II.

13.
J Cancer ; 11(4): 769-775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31949478

RESUMO

Dendritic cells (DCs) have a critical effect on the outcome of adaptive immune responses against growing tumors. Recent studies on the metabolism on DCs provide new insights on the functioning of these critical controllers of innate and adaptive immunity. DCs within the tumor microenvironment (TME) often exist in an inactive state, which is thought to limit the adaptive immune response elicited by the growing tumor. Tumor-derived factors in the TME are known to suppress DC activation and result in functional alterations in DC phenotype. We are now beginning to appreciate that many of these factors can also induce changes in immune cell metabolism. In this review, we discuss the functional alternation of DC phenotype by tumor metabolites.

14.
Molecules ; 25(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906464

RESUMO

Ginsenosides are active components found abundantly in ginseng which has been used as a medicinal herb to modify disease status for thousands of years. However, the pharmacological activity of ginsenoside Re in the neuronal system remains to be elucidated. Neuroprotective activity of ginsenoside Re was investigated in SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) to induce cellular injury. Ginsenoside Re significantly inhibited 6-OHDA-triggered cellular damage as judged by analysis of tetrazolium dye reduction and lactose dehydrogenase release. In addition, ginsenoside Re induced the expression of the antioxidant protein glutathione peroxidase 4 (GPX4) but not catalase, glutathione peroxidase 1, glutathione reductase, or superoxide dismutase-1. Furthermore, upregulation of GPX4 by ginsenoside Re was mediated by phosphoinositide 3-kinase and extracellular signal-regulated kinase but not by p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Ginsenoside Re also suppressed 6-OHDA-triggered cellular accumulation of reactive oxygen species and peroxidation of membrane lipids. The GPX4 inhibitor (1S,3R)-RSL3 reversed ginsenoside Re-mediated inhibition of cellular damage in SH-SY5Y cells exposed to 6-OHDA, indicating that the neuronal activity of ginsenoside Re is due to upregulation of GPX4. These findings suggest that ginsenoside Re-dependent upregulation of GPX4 reduces oxidative stress and thereby alleviates 6-OHDA-induced neuronal damage.


Assuntos
Ginsenosídeos/farmacologia , Oxidopamina/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Glutationa Peroxidase GPX1
15.
J Food Biochem ; 44(2): e13117, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31823402

RESUMO

The effects of duck oil and lard oil on lipotoxicity induced by saturated long-chain fatty acids were evaluated in HepG2 cells. Lipotoxicity triggered by palmitate, a saturated fatty acid, was inhibited more by duck oil-loaded nanoemulsion (DO-NE) than by lard oil-loaded nanoemulsion (LO-NE) and control nanoemulsion (NE) in HepG2 cells. Accumulation of reactive oxygen species and lipid vacuoles in HepG2 cells induced by palmitate treatment was inhibited by DO-NE but not by LO-NE. Consistently, treatment of HepG2 cells with DO-NE, but not with NE or LO-NE, significantly reduced the expression levels of peroxisome proliferator-activated receptor-γ2 and sterol regulatory element-binding protein-1, which are key regulatory proteins in hepatic lipid accumulation. In addition, the cleavage of poly (ADP-ribose) polymerase and caspase-3 were reduced more by DO-NE than by LO-NE, indicating that DO-NE directly attenuates cellular damage induced by palmitate. Collectively, these results imply that the biological activity of duck oil against palmitate-induced cellular damage is more potent than that of lard oil. PRACTICAL APPLICATIONS: Accumulated lipids in nonadipose tissues, especially the liver, cause lipotoxicity, a pathologic feature of hepatic disorders, by inducing oxidative stress. A nanoemulsion loaded with duck oil, which is a functional food widely consumed by Korean people, inhibited lipotoxicity by suppressing lipid accumulation in HepG2 cells exposed to palmitate, which mimic nonalcoholic fatty liver disease. Thus, we propose that duck oil can be used as a functional food to improve lipid-induced hepatic disorders.


Assuntos
Patos , Palmitatos , Animais , Gorduras na Dieta , Células Hep G2 , Palmitatos/toxicidade
16.
Animals (Basel) ; 9(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248033

RESUMO

Bovine mastitis is a common inflammatory disease in the udder of dairy cows that causes economic loss to dairy industries. The development of alternative strategies, especially the utilization of natural products, e.g. Moringa oleifera, has gained a lot of interests. The objective of the current study was to investigate the protective effects of moringa extract (ME) in bovine mammary epithelial cells (MAC-T) in in vitro settings. Radical scavenging capacities and anti-inflammatory properties of ME were examined using lipopolysaccharide (LPS)-challenged MAC-T cells. ME showed significant radical scavenging activities. In addition, ME decreased reactive oxygen species produced by LPS in cells. ME also attenuated inflammatory cyclooxygenase-2 expression induced by LPS by down-regulating NF-κB signaling cascade. Moreover, ME ameliorated LPS-induced pro-inflammatory cytokines including tumor necrosis factor-, interleukin-1, and interleukin-6. Furthermore, ME up-regulated mRNA expression levels of heme oxygenase-1, NAD(P)H: quinone oxidoreductase-1, and thioredoxin reductase 1. Importantly, ME promoted differentiated MAC-T cells by increasing mRNA expression levels of α-casein S1, α-casein S2, and ß-casein. In conclusion, ME has beneficial effects in bovine mammary epithelial cells through its anti-inflammatory, antioxidant, and casein production properties. Our study provides evidence that ME could be a good candidate for a feed supplement to decrease inflammatory responses due to bovine mastitis.

17.
J Neurochem ; 151(3): 370-385, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31063584

RESUMO

Neuronal expression of beta-secretase 1 (BACE1) has been implicated in the progression of Alzheimer's disease. However, the mechanisms that regulate BACE1 expression are unclear. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) decreases BACE1 expression by up-regulating suppressor of cytokine signaling 1 (SOCS1) in SH-SY5Y neuroblastoma cells. The activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited expression of BACE1. This effect was abrogated by shRNA-mediated knockdown of PPARδ and by treatment with the PPARδ antagonist GSK0660, indicating that PPARδ is involved in GW501516-mediated suppression of BACE1 expression. On the other hand, GW501516-activated PPARδ induced expression of SOCS1, which is a negative regulator of cytokine signal transduction, at the transcriptional level by binding to a PPAR response element in its promoter. This GW501516-mediated induction of SOCS1 expression led to down-regulation of BACE1 expression via inactivation of signal transducer and activator of transcription 1. GW501516-activated PPARδ suppressed the generation of neurotoxic amyloid beta (Aß) in accordance with the decrease in BACE1 expression. Taken together, these results indicate that PPARδ attenuates BACE1 expression via SOCS1-mediated inhibition of signal transducer and activator of transcription 1 signaling, thereby suppressing BACE1-associated generation of neurotoxic Aß.


Assuntos
Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina/efeitos dos fármacos , Tiazóis/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Janus Quinase 2/efeitos dos fármacos , Janus Quinase 2/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Regulação para Cima
18.
FASEB J ; 33(6): 7707-7720, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30897345

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.


Assuntos
Adiponectina/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , PPAR gama/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Rosiglitazona/farmacologia , Adiponectina/genética , Animais , Linhagem Celular , Humanos , Ligantes , Ligação Proteica , Transcrição Gênica
19.
Biomed Pharmacother ; 110: 181-189, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30469082

RESUMO

Turmeric is a well-known functional food exhibiting multiple biological activities in health and disease. However, low aqueous solubility and poor bioavailability limit its therapeutic potential. Herein, we investigated the utility of nanoemulsions as a carrier to improve the efficacy of turmeric. Compared with turmeric extract (TE), 5% TE-loaded nanoemulsion (TE-NE), which contains 20-fold lower curcumin content than TE, achieved similar inhibition of palmitate-induced lipotoxicity in HepG2 cells. Exposure of HepG2 cells to 5% TE-NE also suppressed the palmitate-induced accumulation of lipid vacuoles and reactive oxygen species comparably with TE, and was accompanied by decreased levels of sterol regulatory element-binding protein (SREBP)-1, peroxisome proliferator-activated receptor-γ2 (PPAR-γ2), cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP). Consistent with these effects in HepG2 cells, oral administration of 5% TE-NE to mice fed a high fat diet (HFD) markedly suppressed lipid accumulation in liver, leading to a significant reduction in body weight and adipose tissue weight, equivalent to the effects observed with TE. Compared with TE, 5% TE-NE also equivalently inhibited the levels of SREBP-1, PPAR-γ2, cleaved caspase-3, and PARP in the liver of mice fed a HFD. Furthermore, TE and 5% TE-NE significantly improved serum lipid profiles in a similar manner. These observations indicate that nanoemulsions can improve the efficacy of turmeric, thereby eliciting more potent biological efficacy against palmitate- and high fat diet (HFD)-induced cellular damage.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Emulsões/administração & dosagem , Nanopartículas/administração & dosagem , Obesidade/tratamento farmacológico , Palmitatos/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Curcuma , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Emulsões/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Palmitatos/farmacocinética , Extratos Vegetais/farmacocinética , Resultado do Tratamento
20.
Food Sci Biotechnol ; 27(5): 1419-1427, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30319852

RESUMO

Yogurt is a fermented dairy food produced by growth of lactic acid bacteria (LAB). Green tea is associated with beneficial health effects. Thus, the aim of this study was to evaluate the effects of green tea powder (GTP) on the fermentation and bioactive properties of yogurt. Yogurt was supplemented with 0-3% GTP (w/v), and effects on fermentation were determined. In addition, antioxidant and anti-inflammatory effects of GTP supplemented yogurts were determined in HT-29 colon cells. GTP (1-3%) supplementation significantly increased the acidification rate and growth of LAB during yogurt fermentation. Removal of free radicals and cellular H2O2, and an increase of antioxidant Nrf2 and HO-1 proteins were observed in the 1-3% GTP groups. Yogurt extracts with 0-3% GTP showed decreased expression of TNF-α and IL-1ß in cells. In summary, addition of GTP can enhance the beneficial health effects of yogurt by increasing its antioxidant activity, LAB growth and anti-inflammatory effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA